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ABSTRACT 
 
A new highly adaptable model for predicting human 
vision response is presented for enabling an improved 
method of predicting subjective video quality.  The ability 
to adapt enables comparison of video with dissimilar 
image sizes, viewing environments, frame rates, video 
quality classes, etc. (for example HD vs. SD vs. CIF).  
Model test results are compared with human response.  
Responses are from stimuli covering both JND (just 
noticeable differences) and supra-threshold (extending to 
near the opposite extreme).  Supra-threshold responses 
compared include adaptation behavior exemplified by 
nonlinear response responsible for significant sensitivity 
changes, masking and visual illusions.  Given the 
prediction of visible impairments, simulation of the 
contextual adaptation that occurs during the training 
portion of ITU-R BT.500 (subjective assessment 
methodology) is used for predicting DMOS.  
 

1. INTRODUCTION 
 
Previously developed models for predicting subjective 
video quality have one or both of the following: a) 
objective impairment measurements, each weighted by 
estimates of subjective annoyance, and summed to 
produce a single metric per frame and/or sequence [1][2] 
and/or b) an attempt to at least partially mimic human 
vision system response [3][4][5][6][7][8][9]. However, 
vast stimulus-response data from vision science literature 
has remained largely unexploited.  Models that have been 
developed within the vision science community typically 
only address isolated human vision system behaviors, or 
are parameterized as to not be readily adaptable to the 
application of video quality as exemplified by [10][11] 
[12][13][14][15][16][17][18][19][20][21][22]. 

As a result, current standards and practices for 
subjective video quality measurement ignore substantial 
changes in human vision sensitivities.  For example, ITU-
T J.144 models such as VQM [1] do not take into account 
differences in viewing conditions, frame rates, resolutions 
or nominal quality context.  And since J.144 was 

developed for standard definition (SD), using it for 
predicting subjective video quality ratings of other 
formats such as CIF or HD is problematic [23].  There 
have been reports that use of J.144 methods can be 
problematic even with some SD video if content and/or 
impairments are quite different from that used for 
development and verification of the algorithms. 

In addition to human vision perceptual response 
issues, display device differences and the nominal quality 
of each format also play important roles [23]. 

Even for a given format, display and viewing 
conditions, application dependent nominal quality range 
(for example, set by bit rate or program content nominal 
complexity) can vary significantly. This has made 
necessary a) normalizing subjects to the range of quality 
of video in ITU-R BT.500 [24] and b) the bit rate and 
frame rate matrix of categories of VQEG impairment 
ranges and types respectively [25].  As such, the context 
of nominal quality range affects the sensitivity and quality 
rating scales such as MOS and DMOS. 

Using the simulation approach shown in the system 
diagram of Figure 1, video quality rating prediction 
requires a human vision model that can adapt as the 
human vision system does, to different displays, viewing 
conditions, video context and formats, along with a 
method for adapting quality scales as humans do in 
subjective quality rating training and conditioning. 

Such a human vision model has been developed and 
patented [26][27][28][29].  An overview of its 
specification, components, calibration and validation are 
covered in the remaining sections of this paper. 

 

 
Fig. 1. Simulation system diagram for subjective video 
quality rating prediction. 
 
 



2. DEFINING HUMAN VISION MODEL 
RESPONSE SPECIFICATIONS 

 
The specifications of the model may be formulated 

from the data available from thousands of published 
results of experiments in vision science.  Stimulus-
response pairs become the numeric framework for 
describing the input-output behavior desired from the 
human vision model. A good introductory overview of 
experiments and associated stimulus-response sensitivity 
analysis is given in [30]. 

For brevity, the scope of the remaining discussion 
will be limited to achromatic light (luminance) only.  
Analysis for chromatic light follows a similar path. 
 
2.1. Adaptation 
 

Consider that responses may be separated into four 
classes: transparent, linear, fixed (stationary) non-linear 
and adaptive.  Each has counterparts in existing 
algorithms for predicting subjective video quality ratings. 

For example, the point-to-point (pixel) difference 
terms used in PSNR measurement corresponds to the 
transparent response class, with each pixel of a reference 
subtracted from the test, nominally with no prior 
processing, such as filtering, etc.  Hypothetically, for 
video stimuli with content that corresponds closely with 
this first class, the point difference used in PSNR would 
be sufficient for determining relative response. However, 
in practice, by ignoring the behavior of the other classes 
PSNR is not generally an accurate predictor of video 
quality.  For example, PSNR interpreted as human vision 
response to given stimuli is as if human vision responds 
instantaneously (counter to, for example, 
[30][12][31][32][33]) and with perfect acuity (vs. 
[11][13][14][17][18][30][31][34][35][36][37][38][39][40]
[41]).  

Linear response corresponds to cases where fixed 
(stationary) linear filters applied to the stimulus can 
mimic, to the degree required, the human vision response.   
Hypothetically, for video stimuli with content that 
corresponds closely with the linear class, fixed 
spatiotemporal filters would be sufficient in determining 
the sensitivity of perceptual differences.  However, linear 
response does not include such things as the human vision 
system’s change in ability to discern detail in light or dark 
patches as a function of surround or ambient light level, 
nor Weber’s law.  This is as if human vision response had 
no significant signs of adaptation to mean luminance (vs. 
[13][18][30][34][35][37][38][40]), masking (vs. 
[11][13][14][17][18][30][31][34][35][36][37][38][39][40]
[41]), or sensitivity to image similarities between 
reference and test (vs. i.e. orientation sensitivity 
[10][34][30]). 

Fixed (or stationary) nonlinear response corresponds 
to cases where two superimposed images (say, for 
example, two sources of light added), for each point (or 
pixel) in the image, the response is not equal to the sum of 
the responses of each image taken alone.   

From the measurement standpoint, stimulus-response 
pairs that are well mimicked using fixed-nonlinear 
processes such as the commonly used Sobel filter [1, Fig 
B.10][2] fall into this class.   When combined with linear 
filtering, this class includes most of the more advanced 
measurement algorithms of commercially available video 
quality rating prediction methods.  Yet even when 
combined with filters to account for spatiotemporal 
response, it does not account for phenomena like flicker 
vs. brightness, where light of a given intensity appears 
brighter if it is turned on and off rapidly [42], nor the 
effect of perceived brightness vs. luminance adaptation 
[43], nor other temporal aspects of visual illusions such as 
a phantom third pulse seen when two pulses are used as a 
stimulus [44]. 

However, for the general case, human vision response 
to video is adaptive (dynamically non-linear).  Response 
sensitivities can change by more than an extra order of 
magnitude beyond the spatiotemporal dynamic range. An 
example is spatiotemporal contrast sensitivity vs. 
luminance as illustrated in response for 0.28 nits vs. 91 
nits in [45] (Also, see Figures 6,7 and 8). 

These human vision system stimulus-response 
adaptations correspond to physiological adaptations of 
various anatomical structures comprising the human 
vision system. Adaptations include changes in pupil size 
[46], photoreceptor response [47], and neuron response 
[47, p22][70][48]. 

The change in sensitivity with average luminance, 
such as light and dark adaptation, involves the non-
linearity that is consistent with many visual perception 
phenomena.  Phenomena such as enhanced brightness 
with flicker [42], changes in dynamic responses to step 
increases [43, Fig 10], after-images [49], visual illusions 
[44][50][51][52] and extreme sensitivity (i.e. 
photosensitive epilepsy) [54] are consistent with the types 
of non-linearity that account for most of the already 
mentioned adaptation [27, equation 3].   

Current standards measuring of video quality 
(predicting subjective quality) generally do not account 
for adaptation.  As a result, proponents of video quality 
measurement methods for standardization generally 
submit a different model (or at least different calibration 
of the same model) for each combination of resolution 
and frame rate, to cover SD [1], HD [55] or CIF [56]. 
Also, comparisons among these standards have been 
considered to be impractical.  Even with special versions 
of these models, without accounting for adaptations, it is 
still problematic to get good results over ranges such as 



the combination of low light levels of digital cinema, the 
typical home viewing situation and the bright levels of 
mobile displays outdoors.  

Recently there has been growing acknowledgment of 
the importance of adaptation for video quality assessment. 
For example, Johnson [57] describes how color 
appearance models, which have included adaptation as a 
key behavior for predicting differences in simple uniform 
patches of color, could be extended to measure image 
quality by adding a spatiotemporal filter.  However, in 
this example, filters must be selected based on frame rates 
or signal content, while calibration, verification and some 
model component details were not included.  Still, it is 
worth noting the importance of adaptation cited in both 
[57] and in color appearance models including luminance 
appearance [58]. 
 
2.2. Key Human Vision Stimulus-Response Data Sets 
 

Human vision contrast threshold response (contrast 
sensitivity) has been tested as a function of spatial 
frequency and mean luminance 
[31][34][35][40][42][59][60] spatiotemporal frequency 
and mean luminance [31][42][59][61][62], spatial 
frequency and area [31][35][59], surround [63][32], 
duration [12][63], orientation [34][10], spatial pedestal 
(masker) contrast and frequency [34], and temporal 
pedestal contrast and frequency [61]. 

Human vision supra-threshold response to contrast 
has been tested as a function of luminance [64], spatial 
frequency and luminance [40], area and contrast [14], 
area, contrast and spatial frequency [21], luminance, area 
and temporal contrast and temporal frequency [53]. 

Perception of mean luminance has been tested as a 
function of temporal frequency [42], vs. luminance 
adaptation [43],  

Perception of spatial frequency has been tested as a 
function of spatial and temporal frequency 
[39][65][66][50][51][67]. 

Perception of pulses per time interval has been tested 
as a function of conditions required for the three-flash 
illusion [44][52][68][69]. 

These stimulus-response pair sets collectively have 
been used to specify the response of the human vision 
model for general video quality. They represent a 
sampling across the gamut of possible video stimuli and 
conditions such as the low light levels of digital cinema 
(front row to back row) to typical home viewing to the 
bright levels of mobile displays outdoors.  

 
3. MODEL COMPONENTS 

 
3.1. Video Quality Rating Prediction System 
Components 

 
Simulation of display, environment, human vision system 
and contextual training as in ITU-R BT.500 are performed 
in succession by respective processing nodes shown in 
Figure 1.  The display model simulates the digital video 
signal to light conversion. The environment, representing 
viewing distance, ambient light and so forth, is simulated 
via a view model between the display and human vision 
model. The vision model responds to this light as 
specified in section 2.  The objective measures node 
classifies and measures visible impairments objectively, 
with the ability to then sum each with corresponding 
relative annoyance (or relative preference). The summary 
node extracts single summary measures per frame and/or 
video sequence.  Also, the ITU-R BT.500 training 
equivalent, which maps the response summary measures 
to DMOS according to [29] is included in the summary 
node. 
 
3.2. The Human Vision Model 
 

The human vision model takes into account behavior, 
including adaptation, represented by the stimulus-
response data sets of section 2.2.  As described in detail in 
[27], the adaptive integrator of Figure 2 is used to 
construct an adaptive spatiotemporal filter of Figure 3, in 
turn used combined with resolution, viewing distance and 
frame rate adaptation of [28] shown in figure 4.  For full 
reference measurements, the perceptual difference 
prediction system of Figure 5 is used, incorporating the 
adaptive spatiotemporal filter and adaptively weighted 
difference mechanisms of [26].   

 
3.2.1 The Adaptive Integrator 

 
The primary building block within the adaptive 

spatiotemporal filter [27] is the adaptive integrator, also 
known as an adaptive recursive (infinite-impulse 
response, IIR) low-pass filter shown in Figure 2.  The 
integration time (or area) and corresponding frequency 
cut-off are controllable, while the mean of the output 
follows the mean of the input (unity DC gain).   

 

 
 
Fig. 2. Adaptive Integrator 



 
Fig. 3. Adaptive Spatiotemporal filter 
 

 
Fig. 4.  Mechanism for frame rate, resolution and viewing 
distance adaptation 
 
3.2.2 The Adaptive Spatiotemporal Filter 
 

This adaptive integrator is used to integrate (and 
filter) in 4 spatial directions (right, left, up, down) and 
temporally.  The result is a spatiotemporal filter that is 
tunable in each dimension.   Consistent with previous 
models taking into account center and surround 
interaction, for example as described in [47][90][26], two 
spatiotemporal filters are used: one for the center and one 
for the surround.  The surround spatiotemporal response is 
used to both subtract from the center and tune the center 
spatiotemporal response.  In addition, the surround 
spatiotemporal response also alters its own response via 
feedback to the frequency controls, but much more slowly 
than for the center, consistent with longer term adaptation 
such as long term light and dark adaptations [43], after-
images [42], and other long-term effects. 

Nominally the difference of the two three-
dimensional low-pass filter responses results in a band-
pass response.    

To allow for calibration, there are 10 controls.  Eight 
are used for direct threshold spatiotemporal response 
control. Horizontal and vertical dimensions use the same 
controls. The spatial and temporal dimensions of both 
center and surround each have two filter controls.  One 
control is for both baseline frequency cut-off 
(corresponding to integration time or area). Another 

control is for the frequency response adaptation sensitivity 
control (how much does the integration time or area 
change with the adaptation input such as average surround 
luminance).   Two are for control of the transition 
between threshold and supra-threshold response (one for 
spatial and one temporal).  
 

 
Fig. 5. Perceptual difference prediction system 

 
3.2.3 Adapting To New Frame Rates, Resolutions and 
View Distances 
 

After calibration, these adaptive spatiotemporal filters 
can be automatically reconfigured to account for different 
viewing distances and frame rates.  The mechanism for 
this is filter coefficient recalculation for the corresponding 
sample rate ratio as described in [28]. 

 
3.2.4 Remaining HVS Model Structure 
 

In addition to the adaptive spatiotemporal filter, other 
model components are used to take into account Weber’s 
law, perceptual differences between correlated vs. 
uncorrelated images and other behavior including types of 
masking.  Details are given in [26].  There are nine 
associated calibration parameters.  Thus, for the human 
vision perception model, there are 19 calibration 
parameters. 

 



4. MODEL CALIBRATION AND VALIDATION 
 
4.1. Human Vision Model Calibration and Validation 
 
For model calibration of the 19 parameters, light stimulus 
is simulated and model response is compared with 
expected responses from vision science literature.   
Calibration has used approximately 1400 light stimuli 
pairs (test and reference) of which 968 pairs of stimuli 
cover threshold contrast sensitivity using 176 from [34], 
132 from [35], 33 from [10], 176 from [12], 56 from [31], 
80 from [59], 78 from [61], 40 from [62], 162 from [45] 
and 35 from [40].  Supra threshold response was checked 
against 413 sequence pairs consisting of 39 from [14], 1 
from [44], 328 from [53] and 35 from [40].  Care was 
taken to ensure units were normalized to nits (cd/m^2) 
consistent with natural (non-stabilized, binocular) vision. 

The comparison of model response to human vision 
response includes the calculation of error standard 
deviation within specific categories (for example 
threshold or supra-threshold) and overall (all categories 
included), error histograms and fitted Gaussian curves, 
and visual inspections of plotted curves along with the 
original data sets (See Figures 6-8). 

Since the data is gathered from different people and 
has inherent variance, it is not expected that one model 
would identically fit all people simultaneously.  Instead, 
calibration has nearly minimum standard deviation error 
and the error distribution is approximately Gaussian 
(Figure 9). 

Based on errors of responses, for example, spatial 
frequency response vs. luminance, the corresponding 
calibration parameter is modified to reduce the error.  For 
each parameter changed, the corresponding effected 
responses are iteratively measured and analyzed for 
directing further parameter changes for reduced error. 

Validation is achieved if calibration achieves error 
standard deviation within the reference standard deviation 
expected from the data sets taken from the literature.   
Different data sets have different standard deviations, and 
many do not have enough samples for each stimulus to be 
able to compute standard deviation.   However, low 
sensitivity responses generally have higher standard 
deviations.  Therefore, error standard deviations can be 
classified roughly by nominal response sensitivities, even 
if the corresponding standard deviations are not known. 

 
4.2. Summary Node Calibration and Validation 
 
For model calibration of DMOS prediction via ITU-R 
BT.500  training, the training sequence pairs are used to 
measure the corresponding perceptual best case and worst  

 

 
Fig 6. An example of model (solid) vs. human vision 
response (points) [31]: Pedestal luminance is 13 nits. 
Horizontal: spatial frequency, vertical: contrast sensitivity, 
curves: temporal frequencies. 
 
 

 
Fig 7.  The same as Fig. 6 except for 91 nits [45] and the 
temporal frequency varies along the horizontal while each 
curve represents a different spatial frequency. 
 
 

 
Fig 8. Relative perceived temporal contrast for constant 
supra-threshold (14%) contrast vs. temporal frequency at 
different mean luminance levels. Dashed lines connect 
HVS data from [53], solid for HVS model. 
 



 
Fig 9. Example of Gaussian distribution of model vs. 
HVS measured response for threshold data 
(corresponding to 0.1 reference as per Cannon [14]). 
 
 
case differences.  These are then used to map to DMOS 
using the method described in [29]. 

Validation is achieved if subsequent DMOS 
prediction has error standard deviation within the 
expected DMOS standard deviation.  Expected DMOS 
standard deviation is calculated as the standard deviation 
of the opinion score differences divided by square root of 
the number of subjects. 
 

5. SUMMARY 
 
A highly adaptable model is required for an improved 
method of predicting subjective video quality allowing the 
comparison of dissimilar displays, image sizes, viewing 
environments, frame rates and video quality classes. The 
test results of such a model have been compared with 
human vision perceptual response, including adaptation 
behavior exemplified by nonlinear response responsible 
for significant sensitivity changes, masking and visual 
illusions.  Simulation of contextual adaptation of the 
training portion of ITU-R BT.500 was also discussed.  
 

6. REFERENCES 
 
[1] ITU-T J.144 (& ITU-R BT.1683), “Recommendation J.144 
(Rev.1) - Objective perceptual video quality measurement 
techniques for digital cable television in the presence of a full 
reference,” 2004. 
[2] T1A1.3 Working Group, “Digital Transport of One-Way 
Video Signals – Parameters for Objective Performance 
Assessment,” ANSI, T1.801.03-2003. 
[3] S. Daly, “The visible differences predictor: an algorithm for 
the assessment of image fidelity,” in Digital Images and Human 
Vision, ed. Andrew B. Watson (MIT Press, Cambridge, MA 
1993), pp. 162-206.. 
[4] J. Lubin, “A Visual Discrimination Model for Imaging 
System Design and Evaluation,” in Vision Models for Target 
Detection and Recognition, ed. Eli Peli (World Scientific 
Publishing, River Edge, NJ, 1995), pp. 245-283. 
[5] R. Eriksson, B. Andren, K. Brunnstrom, “Modelling the 
perception of digital images: A performance study,” SPIE 

Conference on Human Vision and Electronic Imaging, Vol. 
3299, Jan. 1998, pp. 88-97. 
[6] S.J.P. Westen, R.L. Lagendijk, J. Biemond, “Perceptual 
Image Quality Based on a Multiple Channel HVS Model,” IEEE 
ICASSP-95 pp. 2351-2354. 
[7] C.J. van den Branden Lambrecht, “A Working Spatio-
Temporal Model of the Human Visual System for Image 
Restoration and Quality Assessment Applications,” IEEE 
ICASSP-96, May 7-10, Atlanta, GA; pp. 2291-2294. 
[8] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. 
Battisti, M. Carli, “Two New Full-Reference Quality Metrics 
Based on HVS,” http://enpub.eas.asu.edu/resp/vpqm2007, 
VPQM-06, pp.1-4, 2006. 
[9] R. Ferzli, L. J. Karam, “A Human Visual System-Based 
Model For Blur/Sharpness Perception,” 
http://enpub.eas.asu.edu/resp/vpqm2007, VPQM, pp. 1-4, 2006. 
[10] J. Foley, “Human luminance pattern-vision mechanisms: 
masking experiments require a new model,” Jounal of The 
Optical Society of America, Vol. 11, No. 6, pp. 1710-1719, 
June, 1994. 
[11] J. Rovamo, O. Luntinen, R. Nasanen, “Modelling the 
Dependence of Contrast Sensitivity on Grating Area and Spatial 
Frequency,” Vision Research, Vol. 33, No. 18, pp. 2773-2788, 
1993. 
[12] O. Luntinen, J. Rovamo, R. Nasanen, “Modelling the 
Increase of Contrast Sensitivity with Grating Area and Exposure 
Time,”” Vision Research, Vol. 35, No. 16, pp. 2339-2346, 1995. 
[13] P. Barten, “Physical Model For The Contrast Sensitivity of 
the Human Eye,” Barten Consultancy, 5511 KC Knegsel, The 
Netherlands. 
[14] M. Cannon, “A Multiple Spatial Filter Model for Supra-
threshold Contrast Perception,” in Vision Models for Target 
Detection and Recognition, ed. Eli Peli (World Scientific 
Publishing, River Edge, NJ, 1995), pp. 88-117. 
[15] T. Frese, C. A. Bouman, J. P. Allebach, “A Methodology 
for Designing Image Similarity Metrics Based on Human Visual 
System Models,” SPIE Conference on Human Vision and 
Electronic Imaging, Vol. 3016, Feb. 10-13, 1997, pp. 472-483. 
[16] A. Ahumada, Jr., B. Beard, “Image discrimination models 
predict detection in fixed but not random noise,” Journal of the 
Optical Society of America, Vol. 14, No. 9, pp. 2471-2476, Sep. 
1997.  
[17] A. B. Watson, J. A. Solomon, “Model of visual contrast 
gain control and pattern masking,” Journal of the Optical 
Society of America, Vol. 14, No. 9, pp. 2379-2391, Sep. 1997.  
[18] A. M. Rohaly, G. Buchsbaum, “Global spatiochromatic 
mechanism accounting for luminance variations in contrast 
sensitivity functions,” Journal of the Optical Society of America, 
Vol. 6, pp. 312-317, Feb. 1989. 
[19] B. Levitan and G. Buchsbaum, “Signal sampling and 
propagation through multiple cell layers in the retina: modeling 
and analysis with multirate filtering,“ J. Opt. Soc. Am., July 
1993, Vol. 10, No. 7, pp. 1463-1480. 
[20] J. M. Foley and G. M. Boynton, “A New Model of Human 
Luminance Pattern Vision Mechanisms: Analysis of the Effects 
of Pattern Orientation, Spatial Phase and Temporal Frequency,“ 
SPIE 1994, Vol. 2054, pp. 32-42. 
[21] M. W. Cannon, “A Transducer Model for Contrast 
Perception,” Vision Research, 1991, Vol. 31, No. 6, pp. 983-
998.  

http://enpub.eas.asu.edu/resp/vpqm2007/
http://enpub.eas.asu.edu/resp/vpqm2007/


[22] J. M. Foley, C. Chen, “Pattern detection in the presence of 
maskers that differ in spatial phase and temporal offset: 
threshold measurements and a model,” Vision Res. 39, 1999, pp. 
3855-3872. 
[23] S. Pechard, S. Tourancheau, P. Le Callet, M. Carnec, D. 
Barba, “Towards Video Quality Metrics For HDTV,” 
http://enpub.eas.asu.edu/resp/vpqm2007, VPQM-06, pp. 1-6, 
2006. 
[24] RECOMMENDATION ITU-R BT.500-11, “Methodology 
for the subjective assessment of the quality of television 
picture”, ITU-R, 2002. 
[25] VQEG, “Final Report From The Video Quality Experts 
Group on The Validation Of Objective Models of Video Quality 
Assessment, Phase II,” Tables 2-6, Aug. 25, 2003, pp. 11-14. 
[26] Ferguson, Kevin, “Predicting Human Vision Perception and 
Perceptual Difference,” US Patent No. 6975776, Issued Dec. 13, 
2005. 
[27] Ferguson, Kevin, “Adaptive Spatio-Temporal Filter for 
Human Vision System Models,” US Patent No. 6907143, Issued 
June 14, 2005. 
[28] Ferguson, Kevin, “Variable Sample Rate Recursive Digital 
Filter,” US Patent No. 6976045, Issued Dec. 13, 2005. 
[29] Ferguson, Kevin, “Predicting Subjective Quality Ratings of 
Video,” US Patent No. 6829005, Issued Dec. 7, 2004. 
[30] Graham, N., Visual Pattern Analyzers, Oxford U. Press, 
1989. 
[31] J. J. Koenderink, A. J. van Doorn, “Spatiotemporal contrast 
detection threshold surface is bimodal,” Optics Letters (Opt. 
Soc. Am.), Jan. 1979, Vol. 4, No. 1, pp. 32-34. 
[32] B. Spehar, Q. Zaidi, “Surround effects on the shape of the 
temporal contrast-sensitivity function,” Journal of the Optical 
Society of America, Vol. 14, No. 9, pp. 2517-2525, Sep. 1997. 
[33] C. A. Burbek, D. H. Kelly, “Spatiotemporal Characteristics 
of Visual Mechanisms: Excitatory-Inhibitory Model,” Journal of 
the Optical Society of America, Vol. 70, No. 9, pp. 1121-1126. 
[34] C. Taylor, Z.Pizlo, J. P. Allebach, “Contrast Detection and 
Discrimination Thresholds for Visual Models,” unpublished ms 
submitted to Spatial Vision, circa 1998. 
[35] J. Rovamo, J. Mustonen, R. Nasanen, “Modelling Contrast 
Sensitivity as a Function of Retinal Illuminance and Grating 
Area,” Vision Research, Vol. 34, No. 10, pp. 1301-1314, 1994. 
[36] G. Legge, J. Foley, “Contrast masking in human vision,” 
Journal of Optical Society of America, Vol. 70, No. 12, pp. 
1458-1471, Dec.1980. 
[37] T. Cornsweet, J. Yellott, “Intensity-dependent spatial 
summation,” Journal of the Optical Society of America, Vol. 2, 
No. 10, pp. 1769-1786, 1985. 
[38] J. Mustonen, J. Rovamo, R. Nasanen, “The Effects of 
Grating Area and Spatial Frequency on Contrast Sensitivity as a 
Function of Light Level,” Vision Research, Vol. 33, No. 15, pp. 
2065-2072, 1993. 
[39] N. J. Coletta, D. R. Williams and C. L. M. Tiana, 
“Consequences of Spatial Sampling for Human Motion 
Perception,” Vision Res., 1990, Vol. 30, No. 11, pp. 1631-1648. 
[40] E. Peli, L. Arend, A. T. Labianca, “Contrast perception 
across changes in luminance and spatial frequency,” J. Opt. Soc. 
Am., October, 1996, Vol. 13, No. 10, pp. 1953-1959. 
[41] Wandell, B. A., Foundations of Vision, Sinauer Associates, 
1995. 

[42] G. S. Wasserman, “Brightness Enhancement in Intermittent 
Light: Variation of Luminance and Light-Dark Ratio,” J. Opt. 
Soc. Am., February 1966, Vol. 56, pp. 242-250. 
[43] J. C. Stevens and S. S. Stevens, “Brightness Function: 
Effects of Adaptation,” J. Opt. Soc. Am., March, 1963, Vol. 53, 
No. 3, pp 375-385. 
[44] R. W. Bowen, “Two Pulses Seen As Three Flashes: A 
Superposition Analysis,” Vision Research, 1989, Vol. 29, No. 4, 
pp. 409-417. 
[45] W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, 
“Temporal modulation sensitivity and pulse-detection thresholds 
for chromatic and luminance perturbations,” J. Opt. Soc. Am., 
Oct. 1987, Vol. 4, No. 10, pp. 1992-2005. 
[46] A. Rose, Vision: Human and Electronic, David Sarnoff 
Research Center, RCA, Plenum Press, NY/London, 1973, pp. 
30. 
[47] D. Hubel, Eye, Brian, and Vision, Scientific American 
Library, NY, NY, 1995, pp. 33-136. 
[48] Enroth-Cugell, “The World of Retinal Ganglion Cells,” 
from Shapley, R., Man-Kit Lam, D., ed., Contrast Sensitivity, 
MIT Press, 1993, pp. 155,159. 
[49] J.J. Koenderink, “Contrast Enhancement and the Negative 
Afterimage,” J. Opt. Soc. Am., May 1972, Vol. 62, No. 5, pp. 
685-689. 
[50] D.H. Kelly, “Nonlinear visual responses to flickering 
sinusoidal gratings,” J. Opt. Soc. Am., Sep. 1981, Vol. 71, No. 
9, pp. 1051-1055. 
[51] D.H. Kelly, “Frequency Doubling in Visual Responses,” J. 
Opt. Soc. Am., 1966, Vol. 56, No. 11, pp. 1628-1633. 
[52] R. W. Bowen, J. V. Mallow, P. J. Harder, “Some properties 
of the double-flash illusion,” J. Opt. Soc. Am., Apr. 1987, Vol. 
4, No. 4, pp. 746-755. 
[53] L. E. Marks, “Apparent Depth of Modulation as a Function 
of Frequency and Amplitude of Temporal Modulations of 
Luminance,” J. Opt. Soc. Am., July 1970, Vol. 60, No. 7, pp. 
970-977. 
[54] Wilkins, A., Visual Stress, Oxford Science Publications, 
1995, pp. 7-23 
[55] VQEG, “HDTV Group TEST PLAN,”  
http://www.its.bldrdoc.gov/vqeg/projects/hdtv/index.php, 
 Draft Version 1.3, September 29, 2006. 
 [56] VQEG, “Multimedia Group TEST PLAN,”  
http://www.its.bldrdoc.gov/vqeg/projects/multimedia/index.php, 
Draft Version 1.15, September 28, 2006. 
[57] G. M. Johnson, “Using Color Appearance in Image Quality 
Metrics,” http://enpub.eas.asu.edu/resp/vpqm2007, VPQM-06, 
pp. 1-4, 2006. 
[58] Fairchild, M. D., Color Appearance Models, Addison-
Wesley, Reading MA, 1998, pp. 80-81, 217-393. 
[59] J. G. Robson, “Spatial and Temporal Contrast-Sensitivity 
Functions of the Visual System,” J. Opt. Soc. Am. (Letters to the 
editor), August 1966, pp. 1141-1142. 
[60] F.L. Van Nes, J.J. Koenderink, H. Nas and M.A. Bouman, 
“Spatiotemporal Modulation Transfer in the Human Eye,” J. 
Opt. Soc. Am., Sep. 1967, Vol. 57, No. 9, pp. 1082-1088. 
[61] D.H. Kelly, “Visual Responses to Time-Dependent Stimuli. 
I. Amplitude Sensitivity Measurements,” J. Opt. Soc. Am., April 
1961, Vol. 51, No. 4, pp. 422-429. 

http://enpub.eas.asu.edu/resp/vpqm2007/
http://www.its.bldrdoc.gov/vqeg/projects/hdtv/index.php
http://enpub.eas.asu.edu/resp/vpqm2007/


[62] F.L. Van Nes, J.J. Koenderink, H. Nas and M.A. Bouman, 
“Spatiotemporal Modulation Transfer in the Human Eye,” J. 
Opt. Soc. Am., Sep. 1967, Vol. 57, No. 9., pp. 1082-1088. 
[63] A. Vassilev, “Contrast Sensitivity Near Borders: 
Significance of Test Stimulus Form, Size and Duration,” Vision 
Research, Vol. 13, pp. 719-730, 1993. 
[64] E. Peli, J. Yang, R. Goldstein,. Reeves, “Effect of 
luminance on suprathreshold contrast perception,” J. Opt. Soc. 
Am., August 1991, Vol. 8, No. 8, pp. 1352-1359. 
[65] C. W. Tyler, “Observations on spatial-frequency doubling,” 
Perception, 1974, Vol. 3, pages 81-86. 
[66] T. Maddess, J.M. Hemmi, A.C. James, “Evidence for 
spatial aliasing effects in the Y-like cells of the magnocellular 
visual pathway,” Vision Research, 1998, Vol. 38, pp. 1843-
1859. 
[67] S. Bedford, T. Maddess, K. A. Rose, AC James, 
“Correlations between observability of the spatial frequency 
doubled illusion and a multi-region pattern electroretinogram,” 
Australian and New Zealand Journal of Ophthamology 1997; 25 
Sup. 1, pp. S91-S93. 
[68] M. Ikeda, “Temporal Summation of Positive and Negative 
Flashes in the Visual System,” J. Opt. Soc. Am., Nov. 1965, 
Vol. 55, No. 11, pp. 1527-1534. 
[69] Barten, P., Contrast Sensitivity of the Human Eye, SPIE 
Press 1999.  
[70] B. Levitan and G. Buchsbaum, “Signal sampling and 
propagation through multiple cell layers in the retina: modeling 
and analysis with multirate filtering,” J. Opt. Soc. Am., July 
1993, Vol. 10, No. 7, pp. 1463-1480. 
 


	ABSTRACT

